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Stereoselective synthesis of polyketide fragments using a novel
intramolecular Claisen-like condensation/reduction sequence

Klaus Hinterding,* Suradech Singhanat and Lukas Oberer

Novartis Pharma AG, Transplantation Research, WSJ507.409, CH-4002 Basel, Switzerland

Received 17 September 2001; accepted 1 October 2001

Abstract—Intramolecular Claisen-type cleavage of the Evans-oxazolidinone with an acetate enolate followed by reduction of the
resulting ketone using a borane–amine complex yielded �-hydroxy-�-lactones as fully functionalized polyketide precursors
stereoselectively. Consequently, this reaction sequence constitutes a highly practical alternative to an acetate–aldol reaction.
© 2001 Elsevier Science Ltd. All rights reserved.

Chiral polyketide units are important fragments of
many natural products, especially macrolide antibi-
otics,1 ionophores2 and the immunosuppressive natural
products FK506,3 Rapamycin4 and Sanglifehrin A.5 In
order to investigate derivatives of immunosuppressants
with novel modes of action, we needed an efficient
synthesis of unknown polyketide fragments 1 and 2
(Fig. 1).

Using the Evans-oxazolidinone, the stereocenters at C4
and C5 can be established efficiently in syn-6 and
anti-selective7 propionate aldol reactions. However, set-

ting the stereochemistry at C3 requires a non-trivial
selective acetate–aldol reaction (or equivalent thereof),
for which novel synthetic methodologies are still
urgently needed.8 Indeed, initial studies with nucle-
ophilic additions of acetate enolates and allyl-Ti
reagents to aldehydes 3 and 4 were met by limited
success. Therefore, we reasoned that an intramolecular
cleavage of the Evans-auxiliary by an acetate enolate to
form the �-lactones 5 and 6,9 followed by a stereoselec-
tive reduction of the ketone would constitute an attrac-
tive alternative to the acetate aldol reaction. This
synthetic sequence obviates the need to liberate 3 and 4
from the initial aldol adducts and to perform protecting
group manipulations. Herein we report the successful
implementation of this strategy.

As shown in Scheme 1, anti aldol 710 was transformed
into the corresponding acetate 8 by treatment with
acetic anhydride in the presence of DMAP and NEt3.
No epimerization occurred during this step, as detected
by NMR. Exposure of compound 8 to a solution of
LiHMDS (Li-bistrimethylsilylamide) in THF at −78°C
for 3 h led to the clean formation of �-keto-�-lactone
5,11 with the free oxazolidinone as the only detectable
by-product.12 Acidic lactone 5 was isolated conve-
niently by a simple extraction procedure, which also
allowed for efficient recovery of the chiral auxiliary.
Chemoselective reduction of the keto-function in 5
turned out to be troublesome, since conventional reduc-
ing agents either afforded enolization only or complex
reaction mixtures.13 Clean conversion of ketone 5 into
secondary alcohol 9,14 however, was achieved using
t-BuNH2-BH3 in combination with citric acid.15 The
ratio of C3 epimers was determined by NMR to be
equal to 13/1. NOE experiments revealed that relative

Figure 1.
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Scheme 1. Reagents and conditions : (a) Ac2O, NEt3, DMAP, CH2Cl2, rt; (b) LiHMDS, THF, −78°C; (c) t-BuNH2·BH3, citric acid,
MeOH, H2O, −5 to 0°C; (d) LiOH, H2O, THF.

stereochemistry and conformation of the major
stereoisomer are as shown in Fig. 2: lactone 9 adopts a
boat-conformation with all substituents in equatorial
positions.

Although the exact conformation of ketone 5 is
unknown,16 the relatively high facial selectivity is pre-
sumably the consequence of steric hindrance of two
axial protons next to the reacting carbonyl center

present in chair- and boat-like conformations of keto-
lactone 5. Treatment of lactone 9 with one equivalent
of LiOH in THF/H2O completed the synthesis of
stereotriad 1 as its Li-salt. The same reaction sequence
proved effective to transform syn-aldol 1017 into �-
hydroxy-�-lactone 12 and subsequently into carboxylate
2 (Scheme 2). Again the reduction of keto-lactone 6
yielded one major isomer of 12.18 Its relative stereo-
chemistry was determined by NOE experiments to be as
shown in Scheme 2. The face selectivity can be rational-
ized by the fact that either the ethyl- or methyl-sub-
stituent in lactone 6 is forced into an axial position and
prevents attack of the reducing agent.

In summary, we described a novel and highly practical
alternative to a selective acetate–aldol reaction for the
synthesis of polyketide fragments. The conversion of
syn- and anti-aldols 7 and 10 into stereotriads 1 and 2
can be achieved in only four steps and proceeds in good
overall yield (44–60%).
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Figure 2. Rationalization of stereoselective reduction and
observed NOEs in boat conformation of 9.

Scheme 2. Reagents and conditions : (a) Ac2O, NEt3, DMAP, CH2Cl2, rt; (b) LiHMDS, THF, −78°C; (c) t-BuNH2·BH3, citric acid,
MeOH, H2O, −5 to 0°C; (d) LiOH, H2O, THF.
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