

Pergamon Tetrahedron Letters 42 (2001) 8463–8465

TETRAHEDRON LETTERS

Stereoselective synthesis of polyketide fragments using a novel intramolecular Claisen-like condensation/**reduction sequence**

Klaus Hinterding,* Suradech Singhanat and Lukas Oberer

Novartis Pharma AG, *Transplantation Research*, *WSJ*507.409, *CH*-4002 *Basel*, *Switzerland* Received 17 September 2001; accepted 1 October 2001

Abstract—Intramolecular Claisen-type cleavage of the Evans-oxazolidinone with an acetate enolate followed by reduction of the resulting ketone using a borane–amine complex yielded β -hydroxy- δ -lactones as fully functionalized polyketide precursors stereoselectively. Consequently, this reaction sequence constitutes a highly practical alternative to an acetate–aldol reaction. © 2001 Elsevier Science Ltd. All rights reserved.

Chiral polyketide units are important fragments of many natural products, especially macrolide antibi $otics$,¹ ionophores² and the immunosuppressive natural products $FK506$,³ Rapamycin⁴ and Sanglifehrin A.⁵ In order to investigate derivatives of immunosuppressants with novel modes of action, we needed an efficient synthesis of unknown polyketide fragments **1** and **2** (Fig. 1).

Using the Evans-oxazolidinone, the stereocenters at C4 and C5 can be established efficiently in *syn*-⁶ and *anti*-selective⁷ propionate aldol reactions. However, set-

Keywords: acetate-aldol reaction; polyketides; Evans-auxiliary; βketo-δ-lactones.

ting the stereochemistry at C3 requires a non-trivial selective acetate–aldol reaction (or equivalent thereof), for which novel synthetic methodologies are still urgently needed.8 Indeed, initial studies with nucleophilic additions of acetate enolates and allyl-Ti reagents to aldehydes **3** and **4** were met by limited success. Therefore, we reasoned that an *intramolecular* cleavage of the Evans-auxiliary by an acetate enolate to form the δ -lactones **5** and 6 ^o, followed by a stereoselective reduction of the ketone would constitute an attractive alternative to the acetate aldol reaction. This synthetic sequence obviates the need to liberate **3** and **4** from the initial aldol adducts and to perform protecting group manipulations. Herein we report the successful implementation of this strategy.

As shown in Scheme 1, anti aldol **7**¹⁰ was transformed into the corresponding acetate **8** by treatment with acetic anhydride in the presence of $DMAP$ and $Net₃$. No epimerization occurred during this step, as detected by NMR. Exposure of compound **8** to a solution of LiHMDS (Li-bistrimethylsilylamide) in THF at −78°C for 3 h led to the clean formation of β -keto- δ -lactone **5**, ¹¹ with the free oxazolidinone as the only detectable by-product.¹² Acidic lactone **5** was isolated conveniently by a simple extraction procedure, which also allowed for efficient recovery of the chiral auxiliary. Chemoselective reduction of the keto-function in **5** turned out to be troublesome, since conventional reducing agents either afforded enolization only or complex reaction mixtures.13 Clean conversion of ketone **5** into secondary alcohol **9**, ¹⁴ however, was achieved using t -BuNH₂-BH₃ in combination with citric acid.¹⁵ The ratio of C3 epimers was determined by NMR to be equal to 13/1. NOE experiments revealed that relative

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: $S0040 - 4039(01)01840 - 8$

^{*} Corresponding author. Tel.: +41613243724; fax: +41613246735; e-mail: klaus.hinterding@pharma.novartis.com

Scheme 1. *Reagents and conditions*: (a) Ac₂O, NEt₃, DMAP, CH₂Cl₂, rt; (b) LiHMDS, THF, −78°C; (c) *t*-BuNH₂·BH₃, citric acid, MeOH, $H₂O$, -5 to 0°C; (d) LiOH, $H₂O$, THF.

stereochemistry and conformation of the major stereoisomer are as shown in Fig. 2: lactone **9** adopts a boat-conformation with all substituents in equatorial positions.

Although the exact conformation of ketone **5** is unknown,¹⁶ the relatively high facial selectivity is presumably the consequence of steric hindrance of two axial protons next to the reacting carbonyl center

Figure 2. Rationalization of stereoselective reduction and observed NOEs in boat conformation of **9**.

present in chair- and boat-like conformations of ketolactone **5**. Treatment of lactone **9** with one equivalent of LiOH in THF/H₂O completed the synthesis of stereotriad **1** as its Li-salt. The same reaction sequence proved effective to transform syn -aldol 10^{17} into β hydroxy- δ -lactone 12 and subsequently into carboxylate **2** (Scheme 2). Again the reduction of keto-lactone **6** yielded one major isomer of **12**. ¹⁸ Its relative stereochemistry was determined by NOE experiments to be as shown in Scheme 2. The face selectivity can be rationalized by the fact that either the ethyl- or methyl-substituent in lactone **6** is forced into an axial position and prevents attack of the reducing agent.

In summary, we described a novel and highly practical alternative to a selective acetate–aldol reaction for the synthesis of polyketide fragments. The conversion of *syn*- and *anti*-aldols **7** and **10** into stereotriads **1** and **2** can be achieved in only four steps and proceeds in good overall yield (44–60%).

Acknowledgements

We wish to thank Gebhard Thoma and Rolf Breinbauer for helpful discussions.

Scheme 2. *Reagents and conditions*: (a) Ac₂O, NEt₃, DMAP, CH₂Cl₂, rt; (b) LiHMDS, THF, −78°C; (c) *t*-BuNH₂·BH₃, citric acid, MeOH, H_2O , -5 to 0°C; (d) LiOH, H_2O , THF.

References

- 1. O'Hagan, D. *Nat*. *Prod*. *Rep*. **1995**, 12, 1–32.
- 2. Dutton, C. J.; Banks, B. J.; Cooper, C. B. *Nat*. *Prod*. *Rep*. **1995**, 12, 165–181.
- 3. Tanaka, H.; Kuroda, A.; Marusawa, H.; Hatanaka, H.; Kino, T.; Goto, T.; Hashimoto, M.; Taga, T. *J*. *Am*. *Chem*. *Soc*. **1987**, 109, 5031–5033.
- 4. (a) Vezina, C.; Kudelski, A.; Sehgal, S. N. *J*. *Antibiot*. **1975**, 28, 721–726; (b) Sehgal, S. N.; Baker, H.; Vezina, C. *J*. *Antibiot*. **1975**, 28, 727–732.
- 5. (a) Sanglier, J. J.; Quesniaux, V.; Fehr, T.; Hofmann, H.; Mahnke, M.; Memmert, K.; Schuler, W.; Zenke, G.; Gschwind, L.; Maurer, C.; Schilling, W. *J*. *Antibiot*. **1999**, 52, 466–473; (b) Fehr, T.; Kallen, J.; Oberer, L.; Sanglier, J. J.; Schilling, W. *J*. *Antibiot*. **1999**, 52, 474–479.
- 6. Evans, D. A. *Aldrichim*. *Acta* **1982**, 15, 23–32.
- 7. Raimundo, B. C.; Heathcock, C. H. *Synlett* **1995**, 1213– 1214.
- 8. For detailed information on this topic, see: Braun, M. In *Stereoselective Synthesis* (*Houben*-*Weyl*); Helmchen, G.; Hoffmann, R. W.; Mulzer, J.; Schaumann, E., Eds.; Thieme: Stuttgart, 1996; Vol. E21b, pp. 1603–1666.
- 9. Branda¨nge, S.; Leijonmarck, H. *Tetrahedron Lett*. **1992**, 33, 3025–3028.
- 10. Prepared according to Ref. 7.
- 11. Experimental procedure: A solution of acetate **4** (1.2 g, 3.2 mmol) in THF (25 ml) was added at −78°C to a stirred solution of LiHMDS (1 M in THF, 9.6 ml, 9.6 mmol) in THF (20 ml). After stirring for 3 h, the reaction mixture was quenched at −78°C by the addition of satd $NH₄Cl/MeOH/H₂O$ (100 ml, $1/1/1$, $v/v/v$). Ethylacetate (100 ml) and water (30 ml) were added and the layers separated. The organic phase contained the chiral auxiliary in quantitative yield and 90% purity. The aqueous, basic layer (pH 9–10) was titrated with 0.3N HCl to pH 2–3 and then extracted with CH_2Cl_2 (3×100 ml). Drying with $MgSO₄$ and concentration of the organic layer yielded the product as an off-white solid in quantitative yield and 90% purity. Chromatography (ethylacetate/hexane = $1/2$) gave pure **5** as a white solid (485 mg, 3.1 mmol, 95%): $R_f = 0.35$ in ethylacetate/hexane = 1/2 mp: 78–79°C; ¹H NMR (400 MHz, CDCl₃): δ = 1.12 ppm (t, *J* = 7 Hz, 3H, CH₂CH₃), 1.19 (d, J = 7 Hz, 3H, CHCH₃), 1.68–1.77 $(ddq, J=8 Hz, 1H, CH₂CH₃), 1.92–2.00 (ddq, J=3 Hz,$ $J=8$ Hz, 1H, CH₂CH₃), 2.43 (dq, $J=10$ Hz, $J=7$ Hz, 1H, CHCH₃), 3.45 (d, J=19 Hz, 1H, CH₂CO), 3.56 (d, *J*=19 Hz, 1H, CH₂CO, 4. 28 (ddd, *J*=10 Hz, *J*=7 Hz, *J*=3 Hz, 1H, CHO); MS (EI): 156 (M⁺), 127 (M−C₂H₅⁺), 98, 85, 56, 42; HRMS calcd for $C_8H_{12}O_3$ 155.0708, found 155.0710; $[\alpha]_D^{25}$ = +144, $c = 5.5$ mg/ml in Et₂O. NMR data are in accordance with that of racemic **5**: Brandange, S.;

Leijonmarck, H. *J*. *Chem*. *Soc*., *Chem*. *Commun*. **1983**, 1097–1098.

12. This result is remarkable in the light of Brandanges findings (see Ref. 9). In a related experiment using a Norephedrin-derived oxazolidinone he observed predominant attack at the *endo*-carbonyl function, yielding the 11-membered ring structure. Subtle effects of substituents on the oxazolidinone therefore seem to govern the course of the reaction.

- 13. K-Selectride and DIBAH led to enolization, $LiBH₄$ and $NaBH₄$ in solvents such as MeOH, THF to complex reaction mixtures detected by TLC, while the use of $Me₃N-BH₃$ gave no conversion.
- 14. Experimental procedure: To a stirred solution of ketone **5** (35 mg, 0.22 mmol) in MeOH (2 ml) was added at −5°C a solution of t -BuNH₂-BH₃ (62 mg, 0.67 mmol) in MeOH (2 ml), immediately followed by a 1 M solution of citric acid in water (1.6 ml). After 2.5 h at -5° C, CH₂Cl₂ (15 ml) and water (5 ml) were added. Layers were separated and the aqueous phase was extracted with $CH₂Cl₂$ $(3\times10$ ml). After drying with MgSO₄ and concentration of the organic layer, chromatography (ethylacetate/hexane=2/1) yielded 26 mg (0.16 mmol, 73%) of a colorless oil. $R_f = 0.21$ in ethylacetate/hexane = 1/1; ¹H NMR (500 MHz, DMSO): $\delta = 0.90$ ppm (d, $J = 7.4$ Hz, 3H, CHCH₃), 0.94 (t, $J=6.8$ Hz, 3H, CH₂CH₃), 1.47 (m, 2H, CH2CH3), 1.70 (m, 1H, CHCH3), 2.25 (dd, *J*=6.4 Hz, *J*=16.5 Hz, 1H, CH₂CO), 2.78 (dd, *J*=5.6 Hz, *J*=16.5 Hz, 1H, CH₂CO), 3.60 (m, 1H, CHOCO), 3.85 (ddd, *J*=2.9 Hz, *J*=7.6 Hz, *J*=10.4 Hz, 1H, CHOH), 5.12 (d, *J*=4.7 Hz, 1H, OH); MS (ES+): 159 (MH⁺), 141 (M⁺-H₂O), 129 (M⁺-C₂H₅), 116, 87, 58; HRMS calcd for $C_8H_{14}O_3+OH$ 175.0970, found 175.0971; IR: 3430 (m, OH), 2971, 2937, 2883 (m, CH), 1729 (s, lacton CO), 1462 (m), 1379, 1360 (m), 1250 (s, lacton CO), 1190, 1098, 1042, 999 (m); $[\alpha]_D^{25} = +41.9$, $c = 8$ mg/ml in Et₂O.
- 15. Bennett, F.; Fenton, G.; Knight, D. W. *Tetrahedron* **1994**, 50, 5147–5158.
- 16. The degree of enolization of keto-lactone **5** adds to the difficulty of predicting its reacting conformation in solution. A CDCl₃ solution showed 5 as its keto-tautomer $($ >95%), while in DMSO the enol-form prevailed $($ >90%).
- 17. Gage, J. R.; Evans, D. A. *Org*. *Synth*. **1989**, 68, 77–91.
- 18. The ratio of C3 epimers was detected by NMR to be equal to 4/1. Chromatographic separation of epimers gave pure **10** in 60% yield.